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Non-negative matrix factorization, which decomposes the input non-negative matrix into

product of two non-negative matrices, has been widely used in the neuroimaging field

due to its flexible interpretability with non-negativity property. Nowadays, especially in

the neuroimaging field, it is common to have at least thousands of voxels while the

sample size is only hundreds. The non-negative matrix factorization encounters both

computational and theoretical challenge with such high-dimensional data, i.e., there

is no guarantee for a sparse and part-based representation of data. To this end, we

introduce a co-sparse non-negative matrix factorization method to high-dimensional

data by simultaneously imposing sparsity in both two decomposed matrices. Instead

of adding some sparsity induced penalty such as l1 norm, the proposed method directly

controls the number of non-zero elements, which can avoid the bias issues and thus yield

more accurate results. We developed an alternative primal-dual active set algorithm to

derive the co-sparse estimator in a computationally efficient way. The simulation studies

showed that our method achieved better performance than the state-of-art methods in

detecting the basis matrix and recovering signals, especially under the high-dimensional

scenario. In empirical experiments with two neuroimaging data, the proposed method

successfully detected difference between Alzheimer’s patients and normal person in

several brain regions, which suggests that our method may be a valuable toolbox for

neuroimaging studies.

Keywords: Alzheimer’s disease, co-sparse NMF, l0 constraint, structural MRI, functional MRI

1. INTRODUCTION

High-dimensional data structures have been available and studied in many areas including
neuroimaging (Chén et al., 2018), biology (Bühlmann et al., 2014), signal processing (Shuman
et al., 2013), and economics (Fan et al., 2011). Dimension reduction procedures such as principal
component analysis are used to transform the data from a high-dimensional space into a low-
dimensional space while possessing good interpretability.

Non-negative matrix factorization (NMF) and functional principal component analysis (FPCA)
have been widely applied for dimensionality reduction in neuroimaging data over years. FPCA,
an extension of multivariate principal component analysis, results in matrices with arbitrary signs
using Karhunen–Loeve decomposition and the covariance matrix using the integral with respect
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to time. The main difference between NMF and FPCA is the
non-negativity, which requires the elements of the decomposed
matrices are all non-negative. Non-negativity is often more
intuitive in these settings and the results are more interpretable.

In neuroimaging studies, it is more reasonable to have an
NMF estimate, where the original data matrix X is factorized
into product of two non-negative matrices, i.e., the basis
matrix W and the coding matrix H (Anderson et al., 2014).
A previous study successfully applies NMF to analyze the
group’s structural magnetic resonance imaging (MRI) and
functional magnetic resonance imaging (fMRI) data to find the
difference between the basis image characteristics of patients with
schizophrenia and healthy controls Potluru and Calhoun (2008).
Anderson et al. (2014) adopted NMF to perform unsupervised
modeling of attention deficit hyperactivity disorder patients
with structural MRI and fMRI, behavioral and/or phenotypic
information, explaining the multimodal data of attention deficit
and hyperactivity disorder through potential dimensions.

Functional connectivity (FC) effectively reveals the
organization and integration of brain functions by means
of describing the interaction between time series of neural
activity (Mirzaei and Adeli, 2016). Decreased FC is found to
cause cognition and other functions decline (Damoiseaux, 2017;
Wen X. et al., 2020). The positive correlation of the resting-state
FC shows that the functional synergy is existed (Fox et al., 2005).
Hence, symmetry and non-negative incidence matrices are often
used for fMRI functional connection (Li and Wang, 2015).
The sparse representation-based methods to depict the brain
activity is gradually applied in some neurophysiological study
(Quiroga et al., 2005, 2008). Hence, NMF is appropriate for the
processed fMRI data without the time field in our study because
the functional connection matrix obtained from Pearson’s
correlation coefficient.

Three main types of algorithms are developed for NMF
decomposition, including alternating non-negative least squares
(ANLS) framework (Lawson and Hanson, 1995), multiplicative
update principle (Lee and Seung, 1999), and projected gradient
method (Lin, 2007). One of the first attempt in ANLS is the
positive matrix factorization (Paatero and Tapper, 1994). Based
on this, the general ANLS framework is proposed to solve
the NMF problem, where a non-negative least squares (NNLS)
technique is used to derive estimators for the two non-negative
matrices. An alternative easy-to-operate and speedy method
is the multiplicative update principle, which applies matrix
multiplication and element-wise multiplication to updateW and
H, respectively. This method takes care of the non-negativity
constraint in its updating equations naturally and thus return
a sparse and part-based representation of input data. Although
ANLS and the multiplicative update methods work well with fast
calculation and speedy convergence, both types of algorithms
have no theoretical guarantee for global convergence (Lin, 2007).
The projected gradient, proposed by Lin (2007), is shown to enjoy
desirable optimization properties including convergence rate.

When handling high-dimensional data, these classical NMF
algorithms encounter challenges in both theory and algorithm
(Wang et al., 2015). From the theoretical aspect, high-
dimensional data might cause the non-identification issue and

thus lead to the convergence problem. From the algorithmic
aspect, it is difficult to recover W and H when the original data
matrixX is high dimensional in a reasonable computational time.
In high-dimensional setting, it is common to assume that there
are only a small proportion of elements are non-zero, and the ℓp-
norm (0 < p ≤ 1) is used to restrict the number of non-zero
elements. For examples, Hoyer (2002) and Hoyer (2004) used the
ℓ1-norm due to its convexity and easy implementation. Zhang
et al. (2016) proposed the coupled sparse non-negative matrix
factorization model for the fusion of panchromatic and multi-
spectral images via the ℓ1/2-norm. Based on ℓp-norm, Dang
et al. (2018) and Leng et al. (2019) introduced a smooth non-
negative matrix factorization and an incremental non-negative
matrix factorization, respectively. Rather than directly using the
ℓp-norm, He et al. (2017) proposed to utilize a weighted ℓp-
norm to enhance the sparsity of the abundance matrix in NMF.
However, to impose sparsity on the estimated matrices, it is more
straightforward to use the ℓ0-norm, that is, directly controlling
the number of non-zero elements. In fact, the aforementioned ℓp-
norm (0 < p ≤ 1) is a continuous relaxation of the ℓ0-norm,
which aims to make the implementation more easily. Rather
than approximating the ℓ0-norm, Peharz and Pernkopf (2012)
proposed to use the NNLS technique to derive the non-negative
matrices, and then let the smallest elements to be zero, i.e., a hard
thresholding operator to each element. This work is effective to
enforce sparse structure on the matrices in a column-wise way or
a row-wise way. However, it might be more reasonable to require
both W and H are sparse when trying to learn useful features
from a database of images.

In this paper, we propose a co-sparse non-negative matrix
factorization framework to impose sparsity in both the coding
matrix and the basis matrix. The co-sparsity is realized by
limiting the total number of non-zero elements in both two
matrices to a rather small number, which enables us to resolve
the “curse of dimensionality.” This co-sparsity is similar with
the work proposed by Bolte et al. (2014), where a proximal
alternating linearized minimization algorithm is introduced to
implement it. Yet this algorithm converges in a very slowly
rate, and it is infeasible even with data of moderate size. Here,
we develop a computationally efficient algorithm with block-
updating rule on each matrix separably based on the primal-dual
active set (PDAS) algorithm (Ito and Kunisch, 2013; Jiao et al.,
2015; Wen C. et al., 2020). Due to the non-negative property
of the estimation, we define a sacrifice that can discriminate
non-zero and zero elements as well as satisfy the non-negativity
property. Based on the synthetic experiments, the proposed
algorithm not only converges in a few steps and thus is extremely
fast for sparse problems, but also can accurately estimate the basis
and coding matrices. We also demonstrated the effectiveness
of the proposed method in application to two neuroimaging
data from Alzheimer’s Disease Neuroimaging Initiative (ADNI).
To explore the different brain features in MRI images, a novel
sparse constrained NMF method is introduced to distinguish
between normal people and Alzheimer’s disease (AD) patients
in our study. MRI images can be linearly represented by the
basis matrix W and the weight coefficient matrix H. Due to
human brain is heavily connected within the same subnetworks,
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the connectivity between different subnetworks is sparse. Sparse
NMF method can be adopted to get a sparse representation on
fMRI data, where H represents the sparse linear superposition
coefficient of the basis W. The interpretation of the model built
by NMF is straightforward physiological because non-negativity
and merging coherent functional nodes into a subnetwork.

The rest of the paper is organized as follows. In Section 2, we
introduce our proposed methodology for co-sparse non-negative
matrix factorization and develop an efficient iterative algorithm
based on the primal-dual active set algorithm. Section 3
demonstrates comprehensive simulation studies, and Section 4
illustrates the finite sample performance of the proposal in several
real data sets. Section 5 provides the conclusions and discussions.

2. METHOD AND ALGORITHM

2.1. Co-sparse Non-negative Matrix
Factorization
Suppose that we have a non-negative data matrix X ∈ R

D×N
+ ,

where R+ denote the non-negative real number. For a pre-
specified integer K(≤ min{D,N}), the non-negative matrix
factorization (NMF) aims to factorize X in the following way:

X ≈ WH, s.t.W ≥ 0,H ≥ 0, (1)

where W ∈ R
D×K , H ∈ R

K×N , and ≥ means that all elements
in a matrix are non-negative. Here, W is called the basis matrix
or dictionary and H is called the coding matrix. In practice, K
is usually chosen to be much smaller than D and N in order to
reduce the parameters needed to estimate.

In imaging studies, it is commonly assumed that only a
small proportion of the derived coding and basis matrices
contributes to the original data matrix. Under this assumption,
we consider the following co-sparse non-negative matrix
factorization (CSNMF) problem:

min
H∈RK×N ,W∈RD×K

‖X−WH‖2F

s.t. W ≥ 0,H ≥ 0,
‖H‖0 ≤ αKN,
‖W‖0 ≤ βDK,

(2)

where ‖ · ‖F denotes the Frobenius norm, ‖·‖0 is the l0 norm
counting number of non-zero elements, and α and β are two
tuning parameters satisfying 0 ≤ α,β ≤ 1. The parameter α

imposes sparsity in matrix W and corresponds to a sparse basis
matrix problem (Hoyer, 2004). The parameter β restricts the
number of non-zero elements inH, which leads to a non-negative
sparse coding problem (Hoyer, 2002). If both α and β are set to
be 1, then problem (Equation 2) reduces to the classical NMF
problem (Lee and Seung, 1999).

2.2. Algorithm
The interplay between non-negative constraint and the l0-sparse
constraint on both W and H poses substantial algorithmic
challenges for solving the CSNMF problem in Equation 2,
for which numerous state-of-art algorithms can become either
inefficient or infeasible. Several algorithms are proposed to solve

the problem of the least squared problem with l0 constraint.
Such as, the iterative hard thresholding algorithm (Blumensath
et al., 2007), the mixed integer optimization (Bertsimas et al.,
2016) and the primal-dual set (PDAS) algorithm. The primal-
dual active set algorithm is adopted due to its desirable theoretical
property (Huang et al., 2018) and its fast speed in Wen’s study
(Wen C. et al., 2020). Defining a sacrifice has emerged as a key
sticking point in PDAS. Sacrifice is used to define the active set
and fit the sub-models with variables in active set through use
of complementary primal and dual variables. For our problem,
there are two constraints, which makes the problem even harder.

To address this problem, we first decouple the optimization
overW andH, i.e., solve the problem (Equation 2) in a block-wise
iteration by optimizing one with another one fixed. In specific,
given the current estimate {H(m),W(m)}, we solve the following
two sub-problems at the (m+ 1)th iteration:

H(m+1) = arg min
H∈RK×N

‖X−W(m) H‖2F , s.t.H ≥ 0, ‖H‖0

≤ αKN, (3)

W(m+1) = arg min
W∈RD×K

‖X−WH(m+1)‖2F , s.t.W ≥ 0, ‖W‖0

≤ βDK. (4)

Given the current estimate {H(m),W(m)}, both of the sub-
problems (3) and (4) can be treated as a best subset selection
problem with a non-negative constraint. Without loss of
generality, we first develop a generation of the primal-dual active
set (PDAS) algorithm to solve the sub-problem (3), and a similar
strategy can be used to solve the sub-problem (4). The PDAS
algorithm was first introduced by Ito and Kunisch (2013) and
Jiao et al. (2015) for linear regression, and generalized to general
convex loss function with the subset constraint by Wen C. et al.
(2020). The key ingredient is how to define the sacrifice for each
variable, which is used to determine the active set, i.e., the set of
non-zero elements. Based on the sacrifice, the PDAS algorithm
utilizes an active set updating strategy and fits the sub-models
through use of complementary primal and dual variables.

To begin with, let H∗ be the coordinate-wise minimizer of
problem (3). That is, for the (p, t)th element ofH∗, we have

H∗
pt = argmin l

(

Hpt

)

s.t.Hpt ≥ 0,
∥

∥Hpt

∥

∥

0
+
∑

p6=t

‖H∗
pt‖0

leq α KN, (5)

where l
(

Hpt

)

is the partial loss function defined by

l
(

Hpt

)

=
∑

i

∑

j 6=t

(

Xij −
∑

kW
(m)
ik

H∗
kj

)2
+

∑

i

(

Xit −
∑

k 6=pW
(m)
ik

H∗
kt
−W

(m)
ip Hpt

)2
.

Note that l
(

Hpt

)

is a quadratic function of Hpt . Let h
∗ be the

optimizer of l
(

Hpt

)

by ignoring the constraint in Equation (5).
Following Wen C. et al. (2020), we consider the sacrifice of the
(p, t)th element if we switchHpt from h∗ to 0 as

l(0)− l(h∗) =
∥

∥

∥
W

(m)
·p

∥

∥

∥

2

2

(

H∗
pt

)2
,
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where ‖W
(m)
.p ‖22 is the sum of squares of the elements in the

pth column of the matrix W(m). Since we need to guarantee the
non-negative property for Hpt , we modify the definition of the
sacrifice as

1pt =

{ ∥

∥

∥
W

(m)
·p

∥

∥

∥

2

2

(

H∗
pt

)2
, ifH∗

pt ≥ 0

0, otherwise.
(6)

The sacrifice measures the importance of elements in H∗, which
can be used to screen out the unimportant elements. That is,
among all the elements in H∗, we may enforce those H∗

pt to zero
if they contribute the least total sacrifice to the overall loss. To
realize this, calculate sacrifice for each H∗

pt by Equation (6) and
rearrange them by decreasing order:

1[1] ≥ 1[2] ≥ ... ≥ 1[αKN],

where [·] means the rearrangement order by sacrifice.
Then, define the active set for H, A = {(p, t)|Hpt > 0, p =

1, . . . ,D, t = 1, . . . ,K} with cardinality as αKN, and inactive
set I = Ac with cardinality as (1 − α)KN. Then the active and
inactive sets of H can be determined by {1pt , p = 1, . . . ,D, t =
1, . . . ,K}. In specific, at the mth iteration with current solution
{H(m),W(m)}, we can estimateA and I by

A
(m) = {(p, t)|1(m)

pt ≥ 1
(m)
[αKN]},

I
(m) = {(p, t)|1(m)

pt < 1
(m)
[αKN]},

where1
(m)
pt is an estimate of1pt by replacingH

∗
pt in Equation (6)

byH(m)
pt .

After the determination of active set, we can update the final
estimate of H by restricting the non-zero elements, i.e., we may
estimate each column of the [αKN]-non-zero coding matrix by
the NNLS algorithm (Lawson and Hanson, 1995):

h
(m+1)
j = argmin ‖xj−W(m)h‖F , s.t. h

I(m) = 0 and h
A(m) ≥ 0.

(7)
Then the final estimate of coding matrix is H(m+1) =

(h(m+1)
1 , . . . , h(m+1)

N ). Similar strategy can be applied for solving
the sub-problem (4) and details are omitted here for concise.
We summary the above discussion in the alternative primal-dual
active set (APDAS) algorithm as follows.

Remark 1. To speedy the algorithm and get a smaller
reconstruction error, we adopt the following strategy to reduce the
computational burden. When α is less than β, we update matrix
H first, and then update W. When β is less than α, the order of
update is reversed.

Remark 2. To ensure the recognizability of the result, it is
necessary to rescale each column ofW to unity afterW is updated.
If the update order is H first and then W, W does not need to be
unitized in the last iteration.

Algorithm 1 | Alternative primal-dual active set (APDAS)
algorithm.

Require: Data X ∈ R
D×N
+ , sparse levels (α,β), the maximum

number of iterationsmmax, iteration stopping threshold ε.
Ensure: {Ŵ, Ĥ} = {W(m+1),H(m+1)}.
1: Initialization: Initialize W(0) and H(0) with elements from

uniform distribution U(0, 1).
2: form = 1, 2, . . . ,mmax do

3: if α 6= 1 then.

4: • Calculate the sacrifice 1
(m)
pt by replacing H∗

pt in

Equation (6) byH(m)
pt .

5: Update active set and inactive set by
6:

A
(m)
H = {(p, t)|1(m)

pt ≥ 1
(m)
[αKN]},

I
(m)
H = {(p, t)|1(m)

pt ≤ 1
(m)
[αKN]}.

7: • Update H(m) by H(m+1) = (h(m+1)
1 , . . . , h(m+1)

N ),

where h(m+1)
j is computed from (7).

8: end if

9: if β 6= 1 then

10: • Calculate the sacrifice 1
(m)
pt in a similar way with

Equation (6).
11: Update active set and inactive set by
12:

A
(m)
W = {(p, t)|1(m)

pt ≥ 1
(m)
[βDK]},

I
(m)
W = {(p, t)|1(m)

pt ≤ 1
(m)
[βDK]}.

13: • Update W(m) by (W(m+1))T =

((w(m+1))T1 , . . . , (w
(m+1))TD), where (w(m+1))Tj is computed

similar to (7).
14: end if

15: Column normalization of W(m): W
(m)
ik

=

W
(m)
ik

/
∑

iW
(m)
ik

.

16: if ‖X−W(m+1)H(m+1)‖F
‖X‖F

≤ ε then stop.

17: elsem = m+ 1 and return to steps 2− 17.
18: end if

19: end for

Remark 3. To increase the estimation accuracy, we add a re-
calibration step before the above procedure, i.e., we re-estimate
the current solution by a fast combinational NNLS (FC-NNLS)
algorithm (Van Benthem and Keenan, 2004). FC-NNLS can be
used instead of NNLS to more conveniently and efficiently solve
large-scale non-negative constrained least squares problems.

Remark 4. Compared to classical NMF problem, NMF problem
with sparse inducing constraint effectively controlled the non-
uniqueness problem of W and H (Eggert and Korner, 2004).
To demonstrate the stability of the proposed algorithm, we take
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SNR=20, m=120 in simulation 1, and consider three initialization:
(1) randomly generated matrices; (2) random matrices with its
elements being sampled from the original observation matrix X;
(3) matrices generated by singular vector decomposition of the
original observation matrix X. In Figure 1, the output basis matrix
Ŵ obtained from these three initialization strategies shows that
the estimated basis matrices are almost similar and close to the
true basis matrix. Figure 2 depicts that the root mean squared
error (RMSE) varies with the number of iterations for indicating
that proposed CSNMF converge rate under the second strategy is
the fastest. Consequently, CSNMF is certified to be stable and its
convergence rate is influenced by difference of initial values.

Remark 5. Figure 3 depicts the RMSE of the estimator vs. the
iteration times with the initial value of the random matrix in
100 independent replications under the experimental conditions
of Remark 4. Although the initial value is different, the RMSE
decline trajectory is different, Figure 3 shows about 20 iterations
get close to convergence. The result of each experiment converged to
a stable value after 80 iterations. The similar phenomena in other
simulation settings are observed. Hence, Figure 3 suggests that the
convergence result of CSNMF is very stable.

2.3. Comparison With Existing Methods
The proposed framework in Equation (2) can be regarded as
a comprehensive sparse learning in the non-negative matrix
factorization problem for the high-dimensional data. Another
method proposed by Bolte et al. (2014) also considered the
problem (Equation 2) with [αKN] and [βDK] being replaced by
integers s1 and s2, but a totally different algorithm is proposed
for solving it. They developed a proximal alternating linearized
minimization (PALM) algorithm, where a proximal map formula
is used to eliminate the zero elements.

There are significant differences lying behind between our
proposal and the PALM algorithm. First, the proximal map
formula is actually a truncating step with an additional hard
thresholding rule to make the input matrix to be both non-
negative and sparse. This formula is used after the estimation
to simply make the constraints to be satisfied. Yet in our
proposal, the non-negativity is embedded into the determination
of active and inactive sets, and the sparsity is determined by
the sacrifice, which is related to the necessary condition of
the problem (Equation 2). Second, the PALM algorithm use a
pseudo-Newton updating rule to update the current estimates
for both W and H regardless of the constraints. To make
the algorithm to be efficient, we need to determine a suitable
stepwise, which would hinder its use in practice. In contrast,
there is no tuning parameter in our proposal since the non-zero
entries are estimated by the NNLS algorithm. Third, due to the
pseudo-Newton updating rule, the PALM algorithm converges in
a very slowly rate, usually in hundreds even for a low-dimensional
data. Our CSNMF converges in a few steps and is extremely fast
for very sparse problem. This is because that after the active set
is determined, we derive the optimal estimate for the non-zero
elements rather than updating them with a pseudo-Newton step.

When α = 1 or β = 1, the problem (Equation 2) reduces
to the sparse estimation on W or H, which is similar to those

considered in Peharz and Pernkopf (2012). In specific, they
consider the following problems:

min
W,H

‖X−WH‖2F

s.t.W ≥ 0,H ≥ 0,
‖hi‖0 ≤ αK, i = 1, . . . ,N,

(8)

and

min
W,H

‖X−WH‖2F

s.t.W ≥ 0,H ≥ 0,
‖wj‖0 ≤ βD, j = 1, . . . ,K.

(9)

The formal problem is regarded as the NMF ℓ0-H problem and
the latter one is named as the NMF ℓ0-W problem. Although
they are closely related to our problem, there are still substantial
differences between them. While the problem (8) or (9) restricts
the number of non-zero elements within each column, we impose
sparsity on the whole matrix and relax the sparsity in each
column. Thus, the optimum of (8) or (9) is larger than those of
Equation (2) with β = 1 or α = 1. When the columns have
comparable number of non-zero entries, these algorithms achieve
similar results. However, when the columns have unbalanced
number of non-zero entries, the algorithms proposed by Peharz
and Pernkopf (2012) cannot converge to a solution, yet our
proposal could still derive an optimal solution.

3. SYNTHETIC EXPERIMENT

In this section, we use synthetic data to verify the effectiveness of
the CSNMF algorithm in three aspects. The first two simulation
studies restrict the non-zero elements in the coding matrix H

and the basis matrix W, respectively. The third simulation study
illustrates the control of the number of non-zero elements in both
H and W. To be compared, we also consider the NMF l0-H or
NMF l0-W (Peharz and Pernkopf, 2012) and PALM-SNMF (Bolte
et al., 2014) algorithms.

To evaluate the finite-sample performance of different
methods, we consider the following measurements. The first one
is the signal-to-noise ratio (SNR), which is defined by

SNR = 10 log10
‖X‖2F

‖X− ŴĤ‖2F
,

where X is the original data matrix, and Ŵ and Ĥ are the sparse
NMF estimators. The SNR is used to evaluate the reconstruction
accuracy, with the larger SNR value indicates better performance.
The second measure is the basis distance defined by ‖Ŵ−W‖F .
It measures the estimation accuracy of the basis matrix and the
smaller the better.

3.1. Simulation I
The first simulation study considers a sparse basis matrix H

with sparsity level α = 0.2. We first determine the position of
non-zero entries by a discrete uniform distribution, and then fill
them with the absolute values of random variables from N(0, 1).
For the basis matrix W, we draw random variables from the
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FIGURE 1 | Basis curve restored by three initialization methods: (1) randomly generated matrices; (2) random matrices with its elements being sampled from the

original observation matrix X; (3) matrices generated by singular vector decomposition of the original observation matrix X.

FIGURE 2 | Root mean squared error (RMSE) curve of three initialization methods.

standard Gaussian distribution and take its absolute value for
each element. Then, each column of W is normalized to be unit
length so that it can be treated as a basis vector. We fix the
number of basis vector D to be 60, N = 1, 000, m = 300, and let
K chosen from {40, 60, 80}. Finally, the data matrix is generated
by using

X = WH+ E,

where E consists of uniformly and positive random variables. In
specific, the noise E is generated by the following equation:

E = E0 diag

(√

SWH

10s/10SE0

)

,

where E0 is drawn from Uniform distribution U(0, 1), and SWH

and SE0 are the summation of columns in matrix WH and E0,

respectively. The s represents the true SNR and is chosen from
{5, 10, ..., 50}. The above procedure is replicated 10 times for
each combination of SNR and K. Although, Bolte et al. (2014)
recommends setting the gradient descent step size greater than
1, we have found that a better fitting result can be obtained by
taking 0.8 in experiments. Since the gradient descent is very slow,
to ensure convergence, the number of executions is set tom×50.
For comparison, the Basis Matrix Update step in NMFℓ0-H is
executed for once.

Figure 4 shows the SNR and the basis distance vs. s for
different methods. Compared with NMFℓ0-H and PALM-SNMF,
our proposed CSNMF has consistently better performance with
higher reconstruction quality and smaller basis distance. In
terms of SNR, both NMFℓ0-H and PALM-SNMF have satisfied
performance when the true SNR is small, yet they cannot improve
the performance as the true SNR increase when the true SNR is

Frontiers in Neuroscience | www.frontiersin.org 6 January 2022 | Volume 15 | Article 804554

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wu et al. CSNMF

FIGURE 3 | Root mean squared error (RMSE) curve for 100 times with initial value of random matrix.

large. In contrast, the estimated SNR of CSNMF is approximately
a linear function of the true SNR, which indicates that the
CSNMF estimator is able to recover the true signal and retain
all important information in X. Moreover, as the true SNR s
increase, while the basis distance of PALM-SNMF preserves a
substantial gap from zero, the basis distance for the other two
algorithms approach to zero when the number of dictionary K
is small. When K = 80 and the true SNR is high, whereas the
basis distance NMFℓ0-H fluctuates around 2, the gap between
the estimated and true basis for our proposal narrows almost to
vanishing point. This suggests that the basis matrix can still be
identified well by CSNMF even when the number of dictionary K
is large.

To provide further insights into the basis estimation, we plot
one of the estimated basis vectors from the three approaches
with K = 40 and SNR = 50 as well as the true basis vector
for reference in Figure 5. It can be seen that CSNMF has best
performance, which can almost recover the true basis vector,
while the other two methods can not.

3.2. Simulation II
In the second simulation study, we consider 20 basis vectors
constructed by different shapes of size 10 × 10, as shown in
the top left panel of Figure 6. In each shape, the value of white
pixels is 1 and that of black pixels is 0. Thus, there are 10%
elements in W are non-zero. Similarly, we generate the each
element of the coding matrices H by taking absolute value
of independent standard Gaussian noise. The data matrix is
generated from

X = WH+ E,

where E is generated in the same way as Simulation I with
s = 20. Here, we set K = 20 and N = 100. We executed
our algorithm and NMF l0-W for 80 iterations. We executed

PALM-SNMF for 4000 iterations to ensure convergence. We
did not perform more iterations because the NMF l0-W
algorithm started to fail to converge after running 80 times,
and the number of non-zero elements and the SNR decreased
rapidly.

Figure 6 shows the output estimated basis for each method,
from which we can see that the basis matrix found by CSNMF is
the closest to the true basis matrix. In particular, CSNMF recover
almost all the real basis vectors with only 2 patterns deviated
from the real basis. In contrast, NMF l0-W roughly recover
the pattern of the basis vectors, but many of them cannot be
distinguished completely. The patterns found by PALM-SNMF
is basically different from the true ones. In total, when the matrix
X has a sparse structure, CSNMF has better ability to find the true
basis vector. AS for SNR, the value of CSNMF is 23.1664, which
is greater than 4.7088 and 12.3383 of NMF l0-W.

3.3. Simulation III
In the third simulation study, both W and H are assumed to be
sparse. In specific, let α be chosen from {0.2, 0.4, 0.6} and β be
chosen from {0.2, 0.4, 0.6}. For both two matrices, the positions
of the non-zero elements are randomly from a discrete uniform
distribution, and the non-zero elements are filled with absolute
value of random variables from chi-square distribution with
freedom 1. To facilitate the identification issue in basis matrix,
we normalize each column of W to be unit length. We fix the
number of dimension D to be 300, the sample size N to be 300,
m=100, andK=60.We consider the true SNR s being chosen from
{5, 10, ..., 50}. The error term E is generated in the same way as in
simulation I. Finally, we generateX by the equationX = WH+E.
For each combination of s, α and β , the experiment is repeated
10 times independently and the average value was taken.

Figures 7, 8 show the SNR and the basis distance vs. s
for different values of α and β . Compared with PALM-SNMF,
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FIGURE 4 | Plots of the signal-to-noise ratio (SNR) and basis distance vs. the true SNR s for different algorithms in simulation I.

FIGURE 5 | The estimated basis vector curve obtained by co-sparse non-negative matrix factorization (CSNMF), PALM-SNMF and non-negative matrix factorization

(NMF)ℓ0-H as well as the true basis vector when K = 40 and s = 50.

CSNMF has obvious advantages in terms of SNR and basis
distance when the sparsity level α or β is small. Particularly, the
basis distance of PALM-SNMF is closer to 0 when α = 0.2,
β = 0.2 and s = 5, which means that in the case of high
noise, sparse basis space andweight coefficient, our algorithm can
obtain results that are closer to the real basis space and have a
higher SNR. Furthermore, our algorithm can still figure out the
true basis vectors in data with high noise signal. For example,
when α = 0.2 and β = 0.4, the basis distance of CSNMF is
close to 0 when s = 25. The estimated SNR of CSNMF is almost
a linear function of s, indicating that it can better retain the
information of the data. With the increase of α and β , it becomes
harder to recover the true basis vectors. Since W and H become
less sparse, the decomposition results of the two algorithms are
similar.

4. EMPIRICAL EXPERIMENT

In this section, we assess the performance of our proposal in
two data sets from neuroimaging studies in comparison with
the estimators from NMF l0-H (Peharz and Pernkopf, 2012)
and PALM-SNMF (Bolte et al., 2014). In the first data set, we
explore the advantages of the proposed CSNMF in terms of local
feature representation, convergence, and reconstruction error.
The second data set is used to show the differences in brain FC
between people with AD patients and cognitively normal (CN)
people. We measure the reconstruction accuracy in terms of the
root mean square error (RMSE):

RMSE =
∥

∥

∥
X− ŴĤ

∥

∥

∥

F
,
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FIGURE 6 | The result of l0 sparsity control on W. The first image on the left is the base graphics that forms the data matrix X. The next three pictures are the

estimated basis pattern via the three algorithms.

where Ŵ and Ĥ are the sparse NMF estimators.
The two data sets are provided by the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.
edu/). ADNI was launched in 2003 by the National Institute
on Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, private
pharmaceutical companies, and non-profit organizations as a
$60 million and 5-year public-private partnership. The primary
goal of ADNI was to test whether serial MRI, PET, and other
biological markers are useful in clinical trials of mild cognitive
impairment (MCI) and early AD. The determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments and
monitor their effectiveness and estimate the time and cost of
clinical trials. ADNI subjects aged 55–90 years old and from over
50 sites across the USA and Canada participated in the research;
more detailed information is available at www.adni-info.org.

4.1. MRI Data
The first data set consists of structural magnetic resonance
imaging (MRI) scans. In this study, 249 MRI scans obtained
from ADNI database were used. The scans from 107 AD patients

and 142 CN people were performed on a 1.5T MRI scanners
with some individual protocols. Here, we try to decompose
the MRI image for AD patients and CN people individually,
and would like to see the difference between these two groups
of population. As a demonstration, we selected the central
image for each subject, i.e., the 60-th image of size 121 ×

145, and then vectorized it. Figure 9 shows some examples for
AD patients and CN. Therefore, we have two data matrices
XAD and XCN with size of 17, 545 × 107 and 17, 545 × 142,
respectively.

We set the number of basis vectors to be K = 25 and the

sparsity level of coding matrix to be α = 1. To investigate the

influence of sparsity of basis matrix, we vary it from 0.04 to

0.08 with a step size 0.02. For each scenario, we replicate the

above experiment for 10 times. In each replication, we record the

RMSE for each algorithm, and the final RMSE are averaged over
different choices of K and different replications. Since PALM-
SNMF needs more iterations to converge, both the CSNMF and
NMF ℓ0-W algorithms run 40 iterations and PALM-SNMF are
executed for 2,000 iterations. To be fair, we compare the results
of CSNMF and NMF ℓ0-W in the ith iteration to those of
PALM-SNMF in the 50× i iteration, i = 1, . . . , 40.
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FIGURE 7 | The result of signal-to-noise ratio (SNR) with sparsity level α and β from {0.2, 0.4, 0.6} for PALM-SNMF and co-sparse non-negative matrix factorization

(CSNMF).

FIGURE 8 | The result of basis distance with sparsity level α and β from {0.2, 0.4, 0.6} for PALM-SNMF and co-sparse non-negative matrix factorization (CSNMF).

Figure 10 plots the RMSE values fromNMF ℓ0-W and PALM-
SNMF to those from CSNMF vs. the number of iterations. The
top three panels show the results for AD patients, and the bottom

three panels show the results for CN people. Compared with
NMF ℓ0-W, CSNMF can always derive a smaller RMSE value
with convergence guarantee and the superiority is most apparent
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FIGURE 9 | Examples of magnetic resonance imaging (MRI) images of AD patients and CN people.

FIGURE 10 | Plots of the RMSE vs. the iterations for different algorithms in neuroimaging data. The top panels corresponds to the AD patients and the bottom panels

corresponds to the CN people.

when the sparsity is lower, i.e., β = 0.04. For the NMF ℓ0-W
approach, the RMSE increases after 20 iterations, which indicates
that it is unstable and not convergent. This is might because
that the matrix is extremely sparse and it is hard to derive an
appropriate W and H. This also suggests that directly removing
the smallest value may cause the structure of the decomposed

matrix to be unstable. Compared with PALM-SNMF, CSNMF has
the advantage of a rapid decrease in RMSE value. For most of
the experiments, CSNMF needs less than 5 iterations to obtain
a converged estimator, while PALM-SNMF needs more than 200
iterations to get a similar result. This is expected since a pseudo-
Newton step is used in PALM-SNMF and our derive an optimal
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solution after the active set is determined. Moreover, the RMSE
value of CSNMF is smaller than PALM-SNMF. In summary, our
proposed CSNMF is particularly suitable for non-negative matrix
factorization for such extremely sparse data such as MRI image.

To provide further insight into the estimated matrix, we show
two basis vectors derived by the CSNMF algorithmwith β = 0.04
and K = 15 in Figure 11. The first basis vector is actually the
ventricle of brain, an important characteristic reflected by the
MRI image. It can be seen that the ventricle of CN people is
narrower than those of AD patients, which is consistent with
the previous founding (Thompson et al., 2004). The second basis
vectors describe the outline of the ventricle. For AD patients,
it tends to expand upward and downward to the middle of the
ventricle for the second basis vector shows a tendency to extend
to the surroundings.

To further demonstrate the advantages of CSNMF in
collaborative sparseness, we take out the 51st picture to form
our data matrix. It is assumed that each MRI picture can
be represented by a small number of sparse features, it
means both W and H are sparse. In order to verify the
advantages of CSNMF in collaborative sparseness, we adopt

FIGURE 11 | The brain feature images obtained by CSNMF. The top panels

corresponds to the AD patients and the bottom panels corresponds to the CN

people. From left to right, the sub-figures correspond to the same order of

basis vectors.

the following settings: we set K = 25, and 5 sets of values
are adopted for β and α to achieve collaborative sparseness:
(0.2, 0.8), (0.25, 0.7), (0.3, 0.6), (0.35, 0.5), (0.4, 0.4). To ensure the
convergence of the results, CSNMF is executed 100 times, and
PALM-SNMF is executed 5,000 times. Table 1 show the results
of applying PALM-NMF and CSNMF. When the sparsity is the
same, CSNMF gets smaller reconstruction error and better local
representation results.

4.2. Functional MRI Data
The second data set consists of resting-state cerebral fMRI (rs-
fMRI), consisting of 31 subjects with AD and 32 CN people.
Every subject was scanned by using 3.0 T Philips scanners. The rs-
fMRI data is preprocessed using the Data Processing Assistant for
Resting-State fMRI (DPARSF) software (http://rfmri.org/dpabi)
based on Statistical Parametric Mapping 12 (SPM12, http://www.
fil.ion.ucl.ac.uk/spm/) on the MATLAB platform (MathWorks,
MA, USA). For each participant, the first 10 time points were
discarded to avoid the instability of the initial MRI signals. Then,
the fMRI data were corrected for the acquisition time delay and
head motion. The head motion parameters of all participants
were determined, and the inclusion criteria for head movement
were <3.0 mm translation and <3◦ rotation during the fMRI
scan. After these corrections, the images were directly normalized
to the standard Montreal Neurological Institute (MNI) template
at a 3 mm ×3 mm × 3 mm resolution. Finally, the resultant
data were filtered through a temporal band-pass (0.01–0.1 Hz) to
avoid the interferences of low-frequency drift and physiological
noises. By using the Pearson correlation method, we obtained
the FC matrix. To study the highly correlated FC brain regions
with positive contributions, numbers with correlations below 0.8
are set to 0, including those with negative values. After sparse
processing, the sparseness of the sparse FC matrix of normal
people and AD patients are 1.78% and 2.25%, respectively. The
corresponding dimensions are 8,100×31 and 8,100×32. We
adopted the CSNMF method and set K = 15, α = 0.2 and
β = 0.04, and run for 60 times to ensure convergence.

We successfully obtained 15 basis vectors for AD patients and
CN people, respectively. Each sample can be linearly represented
by sparse features and coefficients. Since patients with AD
are accompanied by atrophy of the hippocampus, we mainly
study the FC of the hippocampus and parahippocampal gyrus.
We reshape each basis vector into a 90×90 matrix, and take
out the 37th and 38th column representing the left and right
hippocampus. Finally, we get a 90×30 matrix about the FC of the
hippocampus. Figure 12 shows the FC between the left and right

TABLE 1 | Comparison of non-negative matrix factorization (NMF) PALM-SNMF and co-sparse non-negative matrix factorization (CSNMF) on Alzheimer’s disease (AD)

and cognitively normal (CN) (all results are timed by 102).

Method (0.2,0.8) (0.25,0.7) (0.3,0.6) (0.35,0.5) (0.4,0.4)

AD PALM-SNMF 7.713 7.493 7.370 7.299 7.275

AD CSNMF 7.041 6.960 6.882 6.855 6.841

CN PALM-SNMF 7.969 7.778 7.576 7.435 7.361

CN CSNMF 6.951 6.876 6.844 6.784 6.811
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FIGURE 12 | The functional connectivity between the left and right hippocampus and other brain regions. The color closer to yellow indicates the stronger functional

connection.

FIGURE 13 | Maps of hippocampal connectivity of AD patients and CN people. The lines show significant connections between pairs of regions. The left image drawn

in red is for AD patients, and the right image drawn in green is for CN people. Isolated dots indicate no connectivity.

FIGURE 14 | Maps of parahippocampus connectivity of AD patients and CN people. The lines show significant connections between pairs of regions. The left image

drawn in red is for AD patients, and the right image drawn in green is for CN people. Isolated dots indicate no connectivity.

hippocampus and other brain regions. The yellow part indicates
a strong FC between the hippocampus and the brain area. The
dark blue part has a value of 0.

To show the FC of each brain region more specifically,
we label according to the Anatomical Automatic Labeling
(AAL) brain atlas in Figures 13, 14 of hippocampus and
parahippocampus. Figure 13 shows that the connection between
the left and right hippocampus of AD patients is very strong,

and the right hippocampus is strongly connected with the left
parahippocampal gyrus and right amygdala. However, the left
and right hippocampus of normal people are connected to
more brain regions except for the FC above: left orbital part of
inferior frontal gyrus, right parahippocampus, left amygdala, left
and right calcarineleft cuneus, left and left lingual, left superior
occipital gyrus, left middle occipital gyrus, left and right fusiform
gyrus, left and right superior temporal gyrus, and right middle
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temporal gyrus. These brain areas correspond to the symptoms
of Alzheimer’s patients. The lingual gyrus is a brain structure that
processes vision. It is also believed to play a role in the analysis
of logical conditions and encoding visual memories. Fusiform
gyrus has been linked to various neurological phenomena such
as synesthesia, dyslexia, and prosopagnosia.

Figure 14 shows the maps of parahippocampus connectivity
of AD patients and CN people. The para hippocampal gyrus
of CN people has a stronger connection than AD patients with
left rectus, left hippocampal, and left superior pole temporal
gyrus. Nevertheless, the FC from right parahippocampus to right
inferior temporal gyrus was visibly increased in AD patients. The
FC between the left and right hippocampus and the fusiform
gyrus of AD patients is weakened, but the connection between
the parahippocampal gyrus and the fusiform gyrus is very strong.

We found that most of the identified abnormal hippocampal
FC are in AD patients with known biological interpretation.
For instance, previous studies show that a connection between
the hippocampus and the medial temporal lobe is existed. In
medial temporal lobe, the hippocampal formation is necessary
for declarative memory tasks (Small et al., 2011). Our finding
also demonstrates that there is an FC between hippocampus
and superiortemporal gyrus, which partly forms one of three
gyri in the temporal lobe (Sun et al., 2018). It was showed that
there exists abnormal FC between hippocampus and middle
occipital gyrus in patients with Parkston disease (Chen et al.,
2017). A previous study depicts parallel amygdalo-fusiform and
hippocampo-fusiform pathways are found in normal human
subjects (Smith et al., 2009). Our study also finds the same FC. As
hippocampus monosynaptically connects with the orbitofrontal
cortex (Small et al., 2011), the FC between hippocampus and
orbital part of the inferior frontal gyrus existed in normal person
cohort in our study, which is consistent with previous studies
(Small et al., 2011).

5. DISCUSSION

In this study, we have introduced a new co-sparse non-
negative matrix factorization framework, CSNMF, for co-sparse
estimation in the high-dimensional non-negative decomposition.
Our CSNMF approach accurately recover the sparse basis
vectors and/or the sparse coding matrix via the l0 norm
constraints. Three simulations studies demonstrated that our
method achieved superior accuracy in estimation and accurate
identification of the non-zero elements compared with the
stat-of-art methods. In real application, we applied the proposal
to a MRI data from the ADNI study to get a sparse
representation, and the results showed that it yields a much
smaller reconstruction error. We also applied the CSNMF to
the fMRI data and obtained meaningful results. Therefore, the
CSNMF method is a valuable tool for non-negative matrix
factorization under the high-dimensional setting.

This article represents only the first effort to derive a co-
sparse non-negative matrix decomposition and there are several
potential issues that should be addressed in future research. It
is essential to determine an appropriate value for α and β . In

previous studies on sparse NMF, there is no universal criteria
for the selection of β or α. For example, Peharz and Pernkopf
(2012) set three different sparsity levels of 0.10, 0.25, and 0.33 in
the face experiment. Xie et al. (2017) adopted a sparsity of 0.16
when imposing l0 constraints on K-SVD. According to previous
experience, for some image data like MRI images always with
many non-zero elements, β = sX/7 (where sX is the sparsity
of the data matrix X) is recommended because it can get a
small reconstruction error and obvious local feature basis. In our
study, β is set to approximately equal to the sparsity of X while
constraining the sparsity of α to 0.2 owning to the very sparse
functional connection matrix. We set a smaller number for α to
get a more sparse structure because the sparsity of H without
sparsity constraints is less than 0.5.

The determination of K is also important. Specifically in the
image compression process, larger K retains data information,
and smaller K saves more storage space. In literature, there are
several ways to determine K in the classical NMF problem. On
intuitive method to determine an optimal K is choosing the one
that minimizes the objective function (Paatero and Hopke, 2009).
However, this method often leads to the overfitting issue as it only
considers the training data. To address the overfitting problem,
Yan et al. (2019) proposed a two-step cross-validation technique.
Like other cross-validation techniques, it is time consuming
especially when the dimensionality is too high. Similar with the
total variation explained by the first K eigenvectors in the PCA
and functional PCA methods, Brunet et al. (2004) proposed a
measure called the cophenetic correlation, and selects the optimal
K when the cophenetic correlation starts to fall. We recommend
the use of cophenetic correlation in determining an optimalK for
its simplicity and efficiency in computation.

The theoretical convergence is difficult to establish at present
since the estimated error involves the alternative updating of W
andH. For our proposed algorithm, it will stop when the relative
estimated error is small enough. The original PDAS is shown to
be converged in finite steps (Huang et al., 2018) and thus we
believe our generalization of the PDAS algorithm still process this
desirable convergence property. The solution of our proposed
algorithm is actually a local solution, which updates only one
matrix to find a coordinate-wise solution while fixing the other
one. Practically, results of our several simulation and real data
analysis demonstrates that the proposed algorithm does converge
just like the convergence of original PDAS.
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